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On the Relation Between Time Representations
and Inner Product Spaces
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Stable states (particles), ghosts and unstable states (particles) come with different types
of time representations in unitary groups—definite or indefinite. These representations
are discussed with respect to the induced inner product spaces as extensions of Hilbert
spaces. Unstable particles with their decay channels are treated as higher dimensional
probability collectives.
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1. INTRODUCTION

As codified by J. von Neumann, quantum mechanics is formulated in a Hilbert
space, and this by very good physical and mathematical reasons: First of all,
Hilbert space scalar products are appropriate to obtain experimentally testable
probabilities from a quantum mechanical theory which replace the deterministic
numbers of classical theories. Mathematically, Hilbert spaces share many simple
properties with finite dimensional spaces, e.g., isomorphisms to the dual space or
endomorphisrh C*-algebras.

However, there are important places where a Hilbert space formulation seems
too narrow to accommodate other important physical structures, especially if
guantum theory is based on an operationally motivated group theoretical approach.
It is the purpose of this talk to review and to discuss—with some of the unsolved
problems—two extensions of Hilbert spaces—the case of gauge theories and the
case of unstable particles.

1 Max-Planck-Institut it Physik and Astrophysik, Werner-Heisenberg-InstitutPhysik, Minchen,
Germany; e-mail: hns@mppmu.mpg.de.

2The linear mappings of a vector spafé — V} are its endomorphisms, they constitute a unital
associative algebraL (V). The regular groufsL (V) therein are the/-automorphisms, i.e., the
invertible endomorphisms.
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In quantum mechanics the irreducible definite unitagpresentations of po-
sition translations (characterg)— €% e U(1) are not square integrable. With
the well-known representation theory of the additive groRpgBoener, 1955)
and the related harmonic analysis (Fourier transformation) (Folland, 1995) it may
seem awkward that the nondecomposable, even the irreducible position translation
X € R3 representations, used for scattering states, do not constitute vectors in the
Hilbert space of the square integrable position space functionsd@olyer pic-
ture). To obtain Hilbert space vectors, the translation eigenstates have to come with
square integrable momentum wave packets. One way to reconcile space translation
eigenvectors with Hilbert space structures—not discussed in the following—is to
give up the selfduality of the position representation space worked with and to
sandwich a Hilbert space between a dual pair of topological vector spaces in a
Gel'fand space triplet (rigged Hilbert space)(Gel'fand and Vilenkin, 1964). In
such an extended theory the probability interpretation for experiments, e.g., a sub-
stitute for the Parseval equation (decomposition of the unit) in Hilbert spaces, has
to be found, discussed or abolished, a question which to my knowledge is not
solved satisfactorily yet.

Another important place where operations enforce an extension of Hilbert
space structures are Lorentz transformation compatible theories with massless
Lorentz vector fields as classically first used with the vector potential in elec-
trodynamics and later in the framework of non-Abelian gauge theories. There
arises a clash between the causality compatible indefinite Lorentz metric for the
four spacetime translations and its use as metric for state vectors related to the
four components of a Lorenz vector field. For a massive vector field, e.g., a
weak neutralZ-boson (idealized as stable), a rest system projection is compat-
ible with the definite subgroup projection from the orthochronous Lorentz group
to the spin groupSOy(1, 3) - SO(3); therewith a quantum field of the mas-
sive particle can come with the three spin components only. In contrast to the
massive case, a massless vector field needs more than its two polarized particle
degrees of freedom. The additional two degrees of freedom in the four com-
ponent massless Lorentz vector field are the gauge degree of freedom and—in
an electrodynamical language—the Coulomb degree of freedom. These two non-
particle degrees of freedom reflect the projection of the indefinite orthogonal group
SOp(1, 3) —> SOy(1, 1)x SO(2) involving the axial rotations as little group for the
polarization of the massless particles. In the complex vector spaces of quantum
theory, particles come with definite unitary groups and the related Hilbert spaces, in
the vector field example with the embeddB@(3) — U(3) for the three massive
spinning vector field components aB@(2) — U(2) for the two massless polar-
ized vector field components. In the latter case, the massless nonparticle degrees of

31n this paper, “unitary” includes both “definite and indefinite unitary.” Orthogonal and unitary groups
can come with a nontrivial signatu@(n,.,n_) andU(n;.,n_) which for n.n_> 0 are called indefinite.
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freedom are related to an indefinite unitary gr&ey(1,1)<— U(1,1) acting upon

a “non-Hilbert space.” In the context of massless vector field theories, a probability
compatible coexistence of indefinite unitary inner product spaces, used for a local
formulation of the related gauge interaction, and definite unitary Hilbert spaces
for free noninteracting particles is solved. Its algebraic formulation relying on the
structure of reducible, but nondecomposable time representations(Boener, 1955)
and the connection between the quantum appropriate nilpotent Jordan transforma-
tions (BRS-transformations; Beccéi al, 1976) and the only classically appro-
priate gauge transformations (with spacetime dependent Lie parameters) has been
clarified (Becchigt al, 1976; Kugo and Qjina, 1978) and will be shortly reviewed

in the section “Ghost without Particles” using the language of indefinite unitary
inner product spaces.

For unstable particles, indefinite unitary groups are unavoidable as illustrated,
e.g., by the representation matrix elemBrs — € (5+1T/2t involving a complex
time translation eigenvalu€e — I'/2 with real energyE and positive widthl".

Since the Hilbert space scalar product for the state vectors and particles (translation
eigenstates) is induced by the unitary group which contains the time translation
representation, as sketched in the section “Stable Particles and States,” the arising
problems for an indefinite unitary group, appropriate for unstable particles, are
apparent. In another contribution to this conference (Blum and Saller, in press),
we have proposed to treat the indefinite unitary structure arising for unstable par-
ticles in a relativistic treatment as a position translation representation related
phenomenon by considering the widthas an invariant related to a full-fledged
Lorentz vector. In such a proposal there exist “sharp energy Lorentz systems” for
unstable particles where the time translations are represented in a definite unitary
group and, therewith, may induce—as for stable particles—a Hilbert space struc-
ture where their indefinite unitary position translation representation is considered
in. As well known from quantum mechanics, indefinite unitary representation
matrix elements arise for position translations, e.g. the knotless wave functions
r — ek ¢ U(1) (principal quantum numbér= 1, 2,...) in the nonrelativistic
hydrogen atom. In such an approach, instability and indefinite unitary structure
originate ultimately from the position degrees of freedom, not from the time degree
of freedom. Much additional work has to be done to clarify the viability of this
proposal.

In addition to and connected with this definite—indefinite unitary fea-
tures in the time and position translation representations of unstable particles,
there arises the phenomenon of “probability collectives™ An unstable parti-
cle has to be treated together with its decay products and possibly, as famil-
iar from the neutral kaon system, together with other unstable partner particles.
Such particle collectives, shortly presented in the section “Unstable States and
Particles,” constitute Hilbert subspaces with positive metrices, nondiagonal-
izable in the particle basis. They are higher dimensional generalizations of
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the 1-dimensional Hilbert subspace lattices for stable state vectors with the
logical framework as formalized by Birkhoff and von Neumann (1936). Ques-
tions like the probability normalization of unstable particle collectives, transi-
tion amplitudes, etc. have to be discussed (Saller, in press) which will only be
alluded to.

2. DYNAMICS, UNITARITY AND TIME REFLECTION

In quantum theory, a physical dynamics contains a complex representation
of the real time (translations). It comes with a conjugation which defines an inner
product. A definite unitary product can be used for transition elements and prob-
abilities. In this section, the general mathematical structures for the connection
between time representation groups in complex vector space automorphisms and
the induced inner products is shortly reviewed (Bourbaki, 1959).

As model for time the Abelian totally ordered real numbers are used—either
multiplicatively, called time group

D(1) = {€']t e R}
or additively, called time Lie algebtfawith the time translations
R = logD(1) = {t}

Obviously, as Lie groupd)(1),:) and R, +) as isomorphic.

As familiar from the simplest case, the harmonic oscillater €Ft, a quan-
tum dynamics is a representation of time as group in the automorpl@sr(i¢)
and as Lie algebra in the endomorphisis(V) of a complex vector spacé

DO) =idy
D(t +s) = D(t) o D(s)

Liealgebra: D:R — AL(V),t — D(t) =tD(1)

group: D :D(1) - GL(V), € — D(t), {

The represented basis of the time translations is—up-tthe Hamiltonian
D@A)=iH

For the harmonic oscillator one has a 1-dimensional representation ¢pzdé
with GL (C) the nontrivial numbers aril (C) all complex numbers. The harmonic
oscillator Hamiltonian is the frequendy in D(1) =i E.

In general, a solution of a dynamics is a triagonalization of the Hamiltonian—
perhaps even a diagonalization in the case of only irreducible representations.
Reducible, but nondecomposable contributions cannot be spanned by eigenvectors.
States (bound states, scattering states, particles) have to be eigenvectors under time
action.

4The Lie algebra for a Lie grou@ will be denoted by log5.
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The complex representation spag¢e= C" (finite dimensional for a sim-
ple formulation of the concepts used) has to come with a conjugation in order
to represent the realness of the Lie structure time with concepts like hermitian
(real), anti-Hermitian (imaginary), etc. For the harmonic oscillato® C , this
conjugation is the canonical complex number conjugatios «. In general, a
conjugation of a complex vector spadeis an antilinear isomorphism to its dual
spaceV " (vector space with the lineaf -forms)

VEVT, veo vy, vH=v

Dirac notation v = |v), V* = (v|

For spaces with dimensian N > 2 there is not only the conjugation induced by
the canonical number conjugation.

There may exist even more than one physically relevant conjugation for one
vector space, e.g., in particle physics, the conjugation connecting creation and
annihilation operators ¥> u*, a <> a together with the conjugation connecting
particle creation with antiparticle annihilation and vice verse &, a < U*.

With a conjugation thé/ -endomorphismd € AL (V) can be conjugated
too by using the transposed endomorphisims VT — VT

AL (V)SAL (V) with[f 2V — V]
SIFvAVTEVT Ay

The realness of the time grotip=t € R is implemented by the hermiticity
of the Hamiltonian—with respect to the conjugatien

H = H*

generalizing the realne§s = E of the harmonic oscillator frequency. Therewith,
the generatorH = D(1) for the represented time translations is anti-Hermitian
and the represented time group unitaty! = D(t)—always with respect to the
conjugations

D) = D(—1) = —D(1) =* —anti-Hermitian for time translations
D(t)* = D(~t) = —D(t)"! « —unitary for group representation
The conjugation of the complex representation spécegether with the
action of the represented time translations allows the implementation of the time

reflection by endomorphism conjugation. Time reflection interchanges with future
and past also bra and ket which—for scattering processes—are used for incoming
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and outgoing states

t — —t V)< (V]
0 o vw) S wiv)
D(t), D(t) — D(t)*, D(t)* (Vl[ve R

With the dual product (bilinear) for the vector spatand its linear forms
VI xV—>C, (0,W) (@W)
a conjugation is equivalent to an inner product (a nonsingular sesquilinear form)
VxV—=>C, (V,w)e (Viw)=(*"w)

The unitary group, characterizing and equivalent to the conjugaticnthe
invariance group of the induced inner product

U(V, ) = {u e GL(V)[{u.vijuw) = (viw) forall v,w eV}

This defines the signature of the unitarity and of the conjugation

~ mn ~ 1n+ 0
v_cxn_(o_%_,

n.+n_=n, UV, x*)=U(ng,n)

There are as many different types of conjugations as there are signatures—for
n = 1 onlyU(1). An indefinite unitary group needs more than one dimension. for
n = 2 one has two type4J(2)- andU(1,1)-conjugations, etc. With the exception
of the Euclidean conjugationd(n), denoted with the five-cornered starwhere
one has a scalar product and a Hilbert space structure for the vector\spalte
conjugations and associated inner products are indefinite. In the following time
representations with both definite and indefinite conjugations will be considered.
To become familiar with indefinite conjugationsli{1,1) inner product is
considered which will be used in section “Ghosts Without Particles”

for U(1,1):(|)§<gé)~<é_g)

Us usual, the inner product matrix depends on the vector space basis: A diago-
nal matrix with the explicit signature arises for Sylvester bases(Bourbaki, 1959)
whereas neutral, not orthogonal pairs with trivial norm show up in Witt bases
(Bourbaki, 1959). In the example above Sylvester and Witt bases are related to

each other by the automorphism= %(1 _1). The inner product defines a
U(1,1)-conjugation, denoted with, which—in the basis with the skew-diagonal
matrix for the inner product—interchanges the conjugated diagonal elements in

contrast to the more familiar definité(2)-conjugationx (number conjugation and



Relation Between Time Representations and Inner Product Spaces 2197

transposition) which interchanges the conjugated skew-diagonal elements
L, (2B _ (2
ami(31) (50
o aB\ _[(01\[aB\ (01 (88
san=<:(75) =(30) (75) (30)-(75)

Obviously,U(2) andU(1,1)-hermiticity or unitarity are different.
The product of two conjugations(?ives avector space automorphism, e.g., for
. . 1
U(1,1) andU(2)-conjugationx o * = (1 O)'

The basis dependence of inner product matrices is given by the symmetric
spacesL (CM)/U(n,, n_),i.e. the orientation manifold of a unitary group, n_,
e.g.,GLC/U(1) = expR for 1-dimension, leaving a free normalization, or the real
4-dimensional inner product manifol@. (C?)/U(2) andGL (C?)/U(1,1) for two
dimensions.

3. THREE CHARACTERISTIC TIME REPRESENTATIONS

As discussed above, complex representations of the real-time @p
and time translation® come in unitary groups and their Lie algebras. The rele-
vance of the three representation propertiasitary,” “ faithful’ (injective, and
“irreducible’ for the induced inner products will be discussed in the following.
After a first orientation in this section, three characteristic representation types
(Boerner, 1955; Saller, 1989) will be treated in more detail below with respect to
the probability interpretation.

Irreducible unitaryrepresentations of time with implemented time reflection
are definite unitary irJ(1)

D(1) > €' > €F' € U(1) = expiR
Rat— iEtelogU(l)=iR
with eigenvaluéE € iR

These time representations are not faithful: With the periodicigf®fthe image
of of the noncompact group(1) (line) is its compact quotient groug(1) (1-
torus). They are used for stable states (particles). As well known and repeated
in Section 4, the definite unitary group induces Hilbert space structures with the
guantum characteristic probability amplitudes.

The smallestinitary andfaithful time representations are indefinite unitary,
they are inU(1,1)

1livt

t iEt
D(1)>e ¢ (0 1

) eU@, 1), O0#veR
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V
E)t € logU(1, 1)

with 2 x 2-Hamilton-matrix :H = (g E)

eigenvalueE € iR

These reducible, but nondecomposable time representations can be written with
triangular Jordan matrices involving a basis dependent nontrivial nilconstant
There is a 1-dimensional time translation invariant subspace in the 2-dimensional
representation space. However, there in no invariant complementary space. This
will be illustrated in Section 5.1. Such time representations are used in quantum
field theories to describe ghosts, i.e. for interaction degrees of freedom without
asymptotic particle states, e.g. for the nonphotonic degrees of freedom in gauge
fields, i.e. the Coulomb force and the gauge degrees of freedom where the nilcon-
stant is the gauge fixing constant (Section 5).

Irreducible faithfultime representations are not unitary. They have no time
reflection

¢ > d(EHE) e GL(C) = U(1) x D), T > 0

t
tr—>i<E+ig> € logGL(C) =C

L : r
with eigenvalue iE — 5 eC

The representations of the future cane 0 with the eigenvalues having a
nontrivial real part (width) are used for decaying states, e.g. for unstable particles
(Section 6). The corresponding decomposable indefinite unitary representations
with conjugation implemented time reflection involve two reflected eigenvalues
iEF5

t iEt et 0
DA1)>€ — ¢ < 0 e+%t>

H I
JEt cosh;t sinhit
sinht coshbt

RatH(i(E+i%) 0 ))t

i(E—i%

) e U, 1)

o
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4. STABLE STATES AND PARTICLES

Quantum probability as used with the Hilbert space formulation of quantum
mechanics is induced by irreducible time representationsl(it). The well-
known construction fronJ(1)-conjugation to Fock—Hilbert space is shortly re-
viewed. Ultimately it is used for the quantum treatment of all stable states and
particles.

The harmonic Bose and Fermi oscillator are the quantum representations of
the irreducible time representation, starting from the representations

t > +iEt, € > e"Flwith EcR

on 1-dimensional dual vector spaces with dual bases)LiThese dual bases give
rise (below) to the creation and annihilation operator. They are related to each
other by thel(1)-conjugatior

UQ):V = CudVT =Cu*
V xV —C, Uujuy={Uuu=1

The time translation generator is the basic space idenEtydy which can
be written as tensor product of the dual basic vectors (creation-annhilation
operators)

iH = iEidy = iEu ® u* = iEJu)(u|

The quantum implementation of the irreducible time representations in
U(1) uses the noncommutative quantum algebras (Saller, 1993b,c) of the di-
rect sum spac® @ VT = C?. Quantum algebras are duality induced quotient
algebras of the multilinear tensor algebra\otp VT and contain as elements
all complex creation-annihilation polynomiat3[u,u*], modulo the duality in-
duced (anti) commutators with the notaticm b]. = ab+ € ba. The quantum
algebra is finite dimensional for the Fermi case (Pauli principle) with basic an-
ticommutators and countably infinite dimensional for the Bose case with basic
commutators

e = +1 Fermi
¢ = —1 Bose

[ur,ule —1

} : Qc(C? = Cl[u, "]/ modulo { Lo, [l

dim Q.(C*) = { . (B050)

In the quantum algebras the Hamiltonian for th€l)-time representation
above can be written as the quantization opposite commutator. Its adjoint action
implements the time translations which are formulated by the equations of motion
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48 — adiH(a) = [iH, a]
[u, U] ¢ [(H,u] =iEu

H=E € Q(C) = {[iH, w] = —iEu*

The Hilbert spaces of quantum mechanics are quotient structures of the quan-
tum algebras: An inner product is constructed for the quantum algebra by the
canonical extension of the scalar prodyat, u) = 1 for the conjugation group
U(1) on the basic vector spate

Q. ((CZ) x Q¢ ((Cz) - C,
Juu) = /wuk=1
(alb) = /a*bwith fork =0,1,...
£(u)¥(u)' = Ofork # |
The inner product is positive semidefini@a) > 0 i.e. the quantum algebra is a
pre-Hilbert space. With the annihilation left ideal in the quantum algebra
{n € Q.(C?)|(aln) = Ofor alla € Q.(C?)} = Q(CHu*
one defines the corresponding equivalence classes
Qe((cz) d FOCK€((C2), arlay=a+ QG(CZ)U*

They constitute a complex vector space with definite scalar product, the Fock
space. It is 2-dimensional for the Fermi quantum algebraxgrdimensional for

the Bose quantum algebra
2 .
FOCK.(C) = QuUEA/QEA = | G, e

C®o Bose
FOCK.(C?) x FOCK.(C?), (allb)=/a*b,(alla)=0 < Ja)=0
The Fock space can be spanned by the energy eigenvectordtffifhttme action
as implemented in the quantum algebra
. (u)
basis of FOCK(C?): {|k) = ~= + Q.(C?)u*
K(C%) :{lk) N Qe(CHU

FOCK.(C?) x FOCK.(C?) > C, (k||l) = &

k=0,1 Fermi
k=0,1,2,..} Bose

Its Cauchy completion defines the Hilbert spaces, Fermi or Bose, associated
to an irreducible unitary time representation.
The position representation—only possible for the Bose case

uv+u d u—u {u, U}
forQ_(C?»: x= , ip=—=——, H=E
Q-(C9 73 P=qx NG >
_Ep2+X2
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gives the scalar product Fock space in the form of the rapidly decreasing
functions with the square integrable functions as their scalar product norm
completion

Q_(C?)/Q_(C*u* = FOCK(C?) = S(R) c L3,(R) = FOCK(C?
The degrees of the Hermite polynomials dég=Hk in a (Hilbert) basis reflect the
Z-grading of the Bose quantum algelpa(C?)
U10) = 0= (X + 5 )¥o(x) =0
Kiy) — L (X~
. P00 = 2 (558) vol
R — ~ k . xz
Tl =l =y - et (- f)e
= L _e ¥ H¥(x)

NN

In addition to the time translation orbits, e > €XEUK and the scalar prod-
uct for transition elements and probabilities, ekjl,), Schodinger wavefunctions
are also position translation orbits

R®R > (t, x) — €<Flyk(x) e U(L) x L3, (R)

and introduce a position spread for amplitudes and probabilities.
All particle quantum fields are built with harmonic oscillators where the
creation and annihilation operators are indexed with continuous mormenia®

for go = y/m? + g2
[u(B), U@l = (27)°08(@ — P)
Vs = Cu@)<S Vi = Cu*(@) with Eg(f’%)uéq()é)] - 8
(r(Pu@) = (27)%qd(G — P)

e.g. for a stable spinless® with a Lorentz scalar fieleb, for a stable spin Z°
with a Lorentz vector fiel& or for the spin% electron—positron with particles (u,
u*) and antiparticles (a;ain the left and right handed contributions with a Dirac
field ¥ = (r*, 1*)—all given by direct integralg'® over the boost degrees of
freedom

® d%q u@e +ur(Ge '™

O(x) =

(27)3q0 V2
2= [* F9y (2y C@I U@ (101,23
- (27'[)3(]0 m/a ﬁ ' a= 11 21 3

5 At this point, and only for Bose structures, one may dualize to Gel'fand triplets S@jec L3, (R)
= [Lgx(R)]/ C S(R)r with the tempered distributions.
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D d3q q A ua(q’)eiqx _i_a*a(a)e—iqx
A = —
rAX) = (Zn)gqos(m)a 7
- ® d% q\Au @€ —a“@e '™ [AA=12
Ary) _ -1(4 , ,
100 = (27r)3qos (m)a V2 ' {a =1,2

In addition to the momentum measure, the nonscalar fields involve the corre-
sponding representations of the bod3®(1, 3)/SO(3) = SL(C?)/SU(2)—here
the Weyl and vector representatiofsé ), A(3)}.

5. GHOSTS WITHOUT PARTICLES

Unitary and faithful time representation are in the indefinite unitary group
U(1,1). Suchreducible, but nondecomposable representations are used for the non-
particle ghost degrees of freed®im gauge and Fadeev—Popov fields. Historically,
gauge fields were introduced in order to “compatibilize” space—time translations
with space-time-dependent Lie group transformations. The probability problems
in quantum electrodynamics, arising from the indefinite state space metric, in-
duced by the indefinite Lorentz metric for space—time translations, the subgroup
0O(1,1)c O(1,3) were exacerbated in Yang—Mills theories and finally solved (Kugo
and Djuina, 1978) by replacing the space—time-dependent gauge group transforma-
tions by nilpotent BRS-transformations (Becehal.,, 1976), involving additional
nonparticle Fadeev—Popov degrees of freedom with Fermi statistics. The classical
gauge transformations are not appropriate for quantum structures, they can be used
only for noninteracting particle degrees of freedom. The indefinite unitary time
representations with eigenvectors and nilvectors will be shortly considered in this
section, first in an algebraic matrix model, then in the associated quantum algebras
and, finally, in the relativistic gauge fields.

5.1. Indefinite Unitarity for Ghosts

The dynamics of a Newtonian free mass point with Hamiltoriae- %
X 1-it [ x x(t) = x(0) + ++ p(0)
i t) = M i — M
('p)() (0 1 )('P) {p(t)=p(0)

i) =1 (07 ()

6 Ghosts, as they are called in physics, are nontrivial vectors with trivial norm (inner product). They can
occur only for a nontrivial signature (indefinite metric). Mathematicians call this property isotropic.
Ghost come in pairs, characterized by the minimal indefinite gr@(fsl) oruU(1,1).
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is a faithful nondiagonalizable time representation, in general

01

t—i E v
0E
For the Newtonian mass point momentum is an eigenvector with trivial time trans-
lation eigenvaluée = 0, position is a nilvector (principal vector, no eigenvector).

The Hamiltonian matrix idJ(1,1)-Hermitian and the group representation
U(1,1)-unitary (section 2)

E v %
1= (5=

D(t) = &E! (éi‘f) — D(~)"

etr—>eiEt<1lvt> with E,veR,v#0

The Hamilton-matrix is the sum of two commuting transformations, the semisim-

ple and the nilpotent part, called nil-Hamiltonian

01

00
The representation space cannot be spanned by energy eigenvectors alone

which are characterized by the trivial action of the nil-HamiltoAiaigenvector

(“good”)

0 HIG) = E|G), N|G)=0
G) = (1) (Gl =(1,0).] (H-E)G =0
IG)(t) = €FY|G)

In addition to the eigenvector one needs another principal vector
nilvector (“bad”)

H:E12+vN,N:( ) [H,N]=0,N2=0

1 H|B) = E|B) + v|G), N|B = v|G)
|B)=<O), (B=(0,1),{ (H—E)?B)=0 _
|B)(t) = €FYB) +ivtdEG)
For theU(1,1)-inner product both eigenvectors and nilvectors are ghosts, i.e., their
U(1,1)-norm vanishes
(01 (GIG)=0,(G|B) =1
U 1) (1 o) = { (B|G) = 1, (B|B) =0

H = E(IB)(G| +|G)(BJ) + vIG)(G|

7 Ghosts which are time translation eigenvectors are called “good ghosts"—“bad ghosts” are no time
translation eigenvectors.
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Eigen- and nilvectors form a nbt(1,1)-orthogonal Witt basis. The inner product
gives no Hilbert space structure with the signature explicitly seen in Sylvester
bases

01\ (1 0 (G+B|G+B)=2, (G+B|G-B)=0
10 1-1 (G-B|G+B)=0, (G- B|G—B)=-2

5.2. Ghosts in Quantum Structures

The quantum structure of thg(1,1)-time representation in the last subsection
becomes somewhat more complicated since the nilpotency of the nil-Hamiltonian
N2 = 0 for the matrix product (endomorphism product) is not implemented by
the quantum algebra product using Bose degrees of freedom alone. This requires
the introduction of additional twin-like Fermi degrees of freedom as done with the
Fadeev—Popov (Kugo and Qjima, 1978) fields as Fermi twins for the nonparticle
degrees of freedom in the Bose gauge fields.

The basic representation space is doubled. Therewitfrgraded quantum
algebra (Section 4) is constructed as product of a Bose quantum algebra (capital
letters G,B) and a Fermi quantum algebra (small letters g, b)

Q-(C%) ® Q+(C*) = C[B,G,B*, G*] ® C[b, g, b*g*]

[G*,B] =1, [B*,G] =1

with {{gx,b}zl, (b*, g =1

On the doubled quantum algebra the time development is implemented by the
adjoint action of teh correspondingly doubled Hamiltonian

He = EBC LGB |G

Hgr = Hp + HFf, { «
HF = Ew +vggx

By products of Bose with Fermi operators a nilquadratic BRS-operator (Becehi,
etal, 1971; Saller, 1991, 1992, 1993a) of Fermi type can be constructed
Ngr = gG* + Gg* = [Hgr, Ngr] = 0,N3 =0

The quantum produdiis = GG* of Bose operators is not nilpotent.
On the doubled basic vector space the Hamiltonian matrix shows the block-
diagonal doubling, the BRS matrix is skew-block-diagonal

HO
HBF=HB®HF=<O H):
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The quantum BRS-operator effects—in analogy to the action of the nil-
Hamiltonian action in the % 2-matrix formulation—the projection to a subspace,
spanned by time translation eigenvectors. The graded adjoint action of the BRS-
operator

[Ngr, a] foraBose, e.g.lNgr, G] =0

adNgr(a) = { {NgF, a} foraFermi, e.g{Ngr, g} =0

defines the unital subalgebra of the doubled quantum algebra with the linear com-
binations of the time translation eigenvectors

INVNprQ=(C®) = {p € Q_(CH) ® Q+(C*)| adNgg(p) =0}

The product Fock space f@_(C* ® Q. (C%), as constructed for the(1)-
time representations in Section 4, has an indefinite metric

(GE£B|G£B) =42

2 2 i
FOCK_(C°) ® FOCK,(C?) with { (gE+blgthb) =42

It cannot be used for a probability interpretation. The subspace with the
time translation eigenvectors—i.e., the classes for the BRS-invariance algebra
INV n, Q- (C8) above

{Ip) € FOCK_(C?) ® FOCK, (C?)|Ngg|p) = O}

contains—up t¢0) (the class of the quantum algebra unit 1) widi0) = 1—only
normless vectors (ghosts), e.@|g) = 0 = (G|G). Its metric is semidefinite (pre-
Hilbert space). The canonically associated Hilbert space with the definite classes is
1-dimensional’|0), i.e. it contains only the classes of the scalars. From the whole
operator quantum algebra for th§1,1)-time representation there is—apart form
the scalar€’|0)—no vector left for the asymptotic Hilbert space—ghosts have no
asymptotic states, i.e. they have no particle projections.

5.3. Ghosts in Gauge Theories

U(1,1)-time representations with the characteristic ghost pairs (B, G) arise
in gauge fields. The Lorentz group compatible space—time translation representa-
tions for Lorentz vectors are in the indefinite unitary grauf.,3) > SOy(1,3).
Orthogonal time—space bases (Sylvester bases) and lightlike bases (Witt bases)
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reflect the two bases for eigen- and nilvector used above

<c1)_2> ~ (?_é) X§ — X5 = (Xo + X3)(Xo — X3)

The algebraic concepts used in theq{2)-matrix language above are the left
hand side of the following dictionary to the familiar gauge field language

nilconstant £ 0 ~ gauge fixing constant
nil-HamiltonianN with N? = 0 ~ Becchi-Rouet—Stora charge
nil-Hamiltonian action, e.g\N|B) = v|G) ~ gauge transformation
time translation eigenvectors, elg|G) = 0 ~ gauge invariant vectors
eigenvectors with nontrivial norny asymptotic particles
ghost pairs with trivial norm~ interaction without particles

For a free massless electromagnetic gauge field the quantization

. d*q )
A5 A0 = [ 5 Soetan)| - + 200t 12 | sere

is contrasted with the quantlzatlon of a free massive vector field
220100 = [ @[ + T2 ot - e, > o

The gauge field employs the characteristic Dirac function derivatieg), mul-
tiplied with the gauge fixing constant

The harmonic analysis of the massive vector field with respect to the time
representations with spin 1 involves the Lorentz transformaﬂ()ﬂ) to a rest

system withSO(3) the “little group” for energy—-momenta witf = m? > 0

d3 e|qx —igXx ) _
Al )J u?(@) ﬁ;; *a(G)e with o= e T &

Z(x) =

anda (3) = = (Bl ) e 50w 3, a(2)

g |dapbm + 2 +q0

The time representation by the gauge fields

[(B(@)-ivxonG@e 10)G @

2
o U @)e™+Us (e
Ay = [ 29 (4 2
~J @)% \id Ve e
@+)G@e™ +[B” @-+ivxodoG” @ e
72

with  qo = |d
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involves—in addition to the two photonic particle degrees of freedom in the
1st and 2nd component with two-time representatiorid(it)—the Coulomb in-
teraction and gauge degrees of freedom in the Oth and 3rd compti

a representative #0y(1,3)/50(2) to transform to the polarization grogi(2)
(“little group” for energy—momenta wit? = 0, g # 0)

_ 1] o [|-1
g 1] 0 1

h<T>= oW, W= —— 01\/? O
Id (0 O(%) V2 (1 = 1)

o(jg) <se wn o(5) (2

The U(1,1)-time representation structure of the additional Faddev-Popov
scalar fields doubles the gauge and Coulomb degree of fre¢@oB) on the
Fermi sectoig,b} as shown in the algebraic scheme of the former subsection and
will not be given here explicitly.

The inner product structure can be seen in the decomposition of the indefinite
time representation containing unitary gradi , 3) extending the Lorentz group—
for massive vector fields with Sylvester bases

I
ol

SOp(1, 3)— U(L, 3) > U(L) x U(3)

massive partlcles}, ith . .<_1 0)
Lorentz metric : —|~ =-n

e.g. stabl& : 0%

and for massless gauge fields with Witt bases

massive ghosts SOp(1, 3)— U(1, 3)> U(L, 1) x U(2)

ooned h 0of0(1
and particies, €.ge .~ Wi Lorentz metric :| 0|1,[0 | = —wT onpow
photong : 1700

6. UNSTABLE STATES AND PARTICLES

Decaying states (particles) can be considered in a Hilbert space where they
form, together with other states—stable or unstable—multidimensional probability
collectives. Unstable particles lead to the consideration of non—unitary automor-
phisms of Hilbert spaces. The 2-dimensional neutral kaon system with the short-
and long-lived unstable neutral kaon as an illustration suggests a more general
algebraic formulation.
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6.1. The Neutral Kaons as a Probability Collective

The system of the two neutrd-meson stategKs ) shows—on the one
hand—the phenomenon of CP-violation and—on the other hand—is unstable
and decays into many channels (treated with the general formalism in the next
subsection).

The kaon particles are no CP-eigenstates) to which they can be trans-
formed by an invertible (X 2)-matrix

Ks)\ _ 1 (1Ko .
<|KL>>_T<|K)>, T eGL(C)

Under the assumption of CPT-invariance the matrix is symmetric and parame-
terizable by two complex numbers wherefrom—uwith irrelevd(t)-phases—the
normalizationNk can be chosen to be real

1
T=TT —<1€>, ccC, NkeR

NI+ e \€1

The time development is implemented by a Hamiltonian, non-Hermitian for
the unstable statadx # HZ

A IKDY oy (1K)
for tzo'a<|K)>_lHK(|K)>’

d (IKs)\ . . IKs)
a(|KL>>"d""‘gHK<|KL>)

with the diagonal form for the energy eigenstates

r
diag HKz(MOS I\/CI)L> M=m+i§, mTI'>0

Hq = T! diag HkT = ( Ms — My ¢(Ms - ML)>

S(ML — Ms) Mp — SZMS

For the scalar product, constructed foe 0, the CP-eigenstates constitute
an orthogonal basis in a complex 2-dimensional Hilbert space

. o (KeKy) (K Koy Y 10
CP-eigenstates: ((Kt|Ki) (Kj|K_)) = (0 1)

whereform there arises the posifivaon-diagonal metrical matriX*T for the
time translation eigenstates

; A (KslKs) (Ks|KL) Y _ qur 1 (16
energy eigenstates: <(KLIKs> (KLIKL)) =TT = N—,ﬁ (5 1)

8 Any matrix productf* f is unitarily equivalent to a positive diagonal matrix.



Relation Between Time Representations and Inner Product Spaces 2209

The experiments give a nontrivial transition between the short and long lived
kaon—the real part of. ThereforeT is not definite unitary
_ €t+e
1+ el?
The normalizationNkx = 1, usually chosen, normalizes individually the
particle states, i.e.(Ks|Ks) = (K_|KL_) = 1. However, the kaon system is a
2-dimensional probability collective, i.e., a complex 2-dimensional Hilbert space.
Therefore it can also be collectively normalized (different form the individual
normalization) via the discriminant (determinant)

det T*T = |detT|?> = (defT|defl)
= (Ks|Ks)(KLIKL) — [{(Ks|K) [P =1
VI-1-3) | o
14 €2

A decomposition of the unit can be written with orthogonal CP-eigenvectors
and nonorthogonal time translation eigenvectors (particle)

~0327x102%2=T ¢ U(2)

=N2 =

1o = [Kp ) (K| + K (K|
= |Ks)(K&| + [KL(KT | = [K$) (K| + [KEY (KL

= |Ks)(Ks| = 8|Ks)(KL| = §|KL)(Ks| + [KL)(KL| for

6.2. Nonorthogonal Decaying States

The possibility to have nontrivial transition elements between particles, as
(Ks|KL) above, can be connected to the deviation from the definite unitary struc-
tures for unstable states. the following well-known theorems are relevant for the
situation:

An (n x n)-matrix H acting on a vector spacé¢ = C", e.g. a Hamilton-
matrix for the time translations, is unitarily equivalent to a diagonal matrix if, and
only if it is normal—all concepts with respect to a defirlitén)-conjugation

H=UodiagHoU* with UeU(n) <= HoH*=H*oH

In this case, the vector space can be decomposed into an orthogonal sum of the

eigenspaces fax different eigenvalues spdt¢ = {My}
N N
V=0V, dagH =DMy, (MVi)=(0} for MM
k=1 k=1

For U(n)-Hermitian operator$l = H* the eigenvalues are reldll = E € R.
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An analogue (real) diagonal structure holds for (selfadjoint) normal operators
on infinite dimensional Hilbert spaces.

Hamiltonians acting on a Hilbert space with complex eigenvalues
E+i % I > 0, have to b&J(n)-non-hermitianH # H* . Only with at least one
nonreal energy involved, i.e. one unstable particle, two time translation eigenvec-
tors (particles) with different energies can have a nontrivial transition element—
unstable particles have not to be orthogonal to other particles.

6.3. Probability Collectives for Decaying Particles

The structure with two translation eigenstates (particles) for unstable
kaons can be generalized ¢oeigenstatesM) (particles) with the eigenvalues
M=m+ i% involving at least one unstable stdfe> 0. An orthogonal basis,
related to a particle bas{#) by a non—unitary transformatioh ¢ U(q)is de-
noted by|U)—generalizing the CP-eigenstates of the kaon collective. In addition
all stable decay modes, assumed tofb&ranslation eigenstatd&) (particles)
with real eigenvalue& are included, e.gx, =), |7, 7, 7), |7, |, v) for the kaon
collective

M) = (1m; +i rj 4 [ mass eigenstates with at least
- ! 2 ) ,_, | one decaying channel

U) = (|Ui>)?:1 orthogonal states
_ P stable eigenstates

IE) = (IE))2y { (decay channels)

In a more general formulation also a continuous momentum dependence can be
included.

The translation eigenstates have the time development with a diagonal
Hamiltonian

LAV (1Y) 1_ g _(MO
for tzo'a<|E)>_lH<|E)>’ WHW~ _dlagH_(OE)

The non—unitary transformatiol ¢ U(q + p) isthe product of a triangular matrix
with a (p x g)-matrixw for the decay from unstable particles to decay products,
called Wigner—Weisskopf matrix (Wigner and Weisskopf, 1930), argl a ¢)-
matrix T for the transformation from unstable particles to orthogonal states (no

particles)
W — 1/, w\(T 0\_1/Tw
TN\ 01, 01,/ N\O1p
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(L
_ <|_(|)U T—lw(é/l - E))

The mass eigenstatgd ) have projections both on the orthogonal states and
on the decay channels

. S(IMYY 1 /T w) JU)) _ 1/TIU)+w|E)
eigenstates: <|E>)_N<01p><|E>)_N IE)
The scalar product matrix for the probability collective with tlieH p)

translation eigenstates arises from the diagonal matrix with the orthogonal states
and the decay channels

<<U|U> <U|E>> _ (1,, 0)
(EIU) (E|E) 01)°

(MIM) (MIE)\ WAW — 1 /7T Tw

(EIM) (E|E) ) — TON2 \WT 1, +wrw
with the collective normalization

(detW|detW) = (MIM)(E|E) — (M|E)(E|M)
= detT*T[det(lp + w*w) — detw*w] = N? =1
The scalar product|) of the complex spac¥ = C", n = q + p, with the

translation eigenstates (particles) involving at least one unstable state is a positive

matrix, different from the unit matrix. It can be factorized with a nonunitary matrix
W ¢ U(n) chosen as a representative of the orientation man@l@dC")/U(n)

In # (1) =W'W

The individual probability normalization for one state by the scalar product
(Section 4)

for UQQ):(uju)y=1
is generalized to a collective normalization by the discriminant
for U(n): (detW|deW) =det(|) =1
The invariance group of a scalar product in diagonal bases
U(n) = {U € GL(CM|U*1,U = 1}

is equivalent to the invariance group of the scalar product, reorient&t bya
particle basis tlW*1,W = (|)

{G e GL(CMIG*(])G = (|)} = W tU(mW
i.e. W is determined up ttJ(n).
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A probability collective including decaying particles (translation eigenstates
with complex energies), e.g., the two neutral kaons, together with their decay prod-
ucts, has a holistic identity. There exist many bases, e.g. nonorthogonal particle
states and orthogonal CP-eigenstates for the kaon system. What can be measured
are transition amplitudes between particles states. Via the nonvanishing transition
elements (nonorthogonal) the identity of the energy eigenstates is spread over the
whole collective. Obviously, for a small widtﬁ << 11, the “uncomplete iden-
tity” of a decaying particle, i.e. its being part of a collective, will be difficult to
discover. However, itis to be expected that there are experiments which can test the
difference between an individual probability interpretation of decaying particles
(1-dimensional Hilbert subspaces) and their collective probability interpretation
(higher dimensional Hilbert subspaces) where, e.g., the difference between indi-
vidual and collective discriminant normalization becomes relevant.
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